Effects of silica nanoparticle supported ionic liquid as additive on thermal reversibility of human carbonic anhydrase II.

نویسندگان

  • Azadeh Fallah-Bagheri
  • Ali Akbar Saboury
  • Leila Ma'mani
  • Mohammad Taghizadeh
  • Reza Khodarahmi
  • Samira Ranjbar
  • Mousa Bohlooli
  • Abbas Shafiee
  • Alireza Foroumadi
  • Nader Sheibani
  • Ali Akbar Moosavi-Movahedi
چکیده

Silica nanoparticle supported imidazolium ionic liquid [SNImIL] was synthesized and utilized as a biocompatible additive for studying the thermal reversibility of human carbonic anhydrase II (HCA II). For this purpose, we prepared additive by modification of nanoparticles through the grafting of ionic liquids on the surface of nanoparticles (SNImIL). The SNImIL were fully characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and thermo gravimetric analysis. The characterization of HCA II was investigated by various techniques including UV-vis and ANS fluorescence spectrophotometry, differential scanning calorimetry, and docking study. SNImIL induced disaggregation, enhanced protein stability and increased thermal reversibility of HCA II by up to 42% at pH 7.75.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Glycation Process of Human Carbonic Anhydrase II and Investigation of Effect of Fasting On Enzyme Activity by Using Spectroscopic Methods

Background: Glycation is the non-enzymatic reaction between the carbonyl groups in sugar and free amino groups in proteins. this reaction leads to changes in structure and functions of proteins. Advanced glycation end products (AGEs) is the final stage in this process, which is highly oxidizing and destructive nature, causing many diabetic complications. Methods: In the present investigation, ...

متن کامل

Size and surface chemistry of nanoparticles lead to a variant behavior in the unfolding dynamics of human carbonic anhydrase.

The adsorption induced conformational changes of human carbonic anhydrase I (HCAi) and pseudo wild type human carbonic anhydrase II truncated at the 17th residue at the N-terminus (trHCAii) were studied in presence of nanoparticles of different sizes and polarities. Isothermal titration calorimetry (ITC) studies showed that the binding to apolar surfaces is affected by the nanoparticle size in ...

متن کامل

Silylation of alcohols and phenols by HMDS in the presence of ionic liquid and silica-supported ionic liquids

In this research, different alcohols and phenols are subjected to the reaction with HMDS in the presence of ionic liquid and silica-supported catalysts. Silylation was accomplished under mild reaction conditions at room temperature in short reaction times and good to excellent yields.

متن کامل

Silylation of alcohols and phenols by HMDS in the presence of ionic liquid and silica-supported ionic liquids

In this research, different alcohols and phenols are subjected to the reaction with HMDS in the presence of ionic liquid and silica-supported catalysts. Silylation was accomplished under mild reaction conditions at room temperature in short reaction times and good to excellent yields.

متن کامل

Effect of long-term oral administration of extra thyroxine on oviductal expression of carbonic anhydrase and avidin-related protein-2 genes in broiler breeder hens

Avian sperm are stored in the sperm storage tubules (SSTs) of the hen oviduct for a prolonged period. The impact of avidin-related protein-2 (AVRP2) and carbonic anhydrase II (CA II) in sperm viability in the SSTs has been suggested. The aim of the present study was to investigate the effect of oral administration of a high dose of thyroxine on the oviductal expression of AVRP2<...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of biological macromolecules

دوره 51 5  شماره 

صفحات  -

تاریخ انتشار 2012